Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Compressed air energy storage (CAES) is a low-cost, long-duration storage option under research development. Several studies suggest that near-isothermal compression may be achieved by injecting water droplets into the air during the process to increase the overall efficiency. However, little is known about the thermal-fluid mechanisms and the controlling nondimensional parameters of the expansion process, which has previously been assumed to mirror the compression process. Furthermore, the isothermal round-trip efficiency and the impact of spray-based CAES have not been investigated. This study uses a validated 1-D model for compression and expansion with spray injection to complete a parametric analysis to analyze the thermal-fluid time-dependent physics and resulting roundtrip isothermal efficiency of a CAES system. Comparing the results for compression and expansion simulations, compression is found to have a higher isothermal efficiency than expansion for the same set up. The polytropic index for both compression and expansion tends to decrease and approach the ideal isothermal limit as nondimensional mass loading increases and as nondimensional Crowe number (ratio of thermal response time to domain time) decreases. As such, the highest efficiency designs are those with slow compression speeds and high spray flow rates to achieve high mass loading and those with small droplets to achieve low Crowe numbers—as long as spray work is neglected. If spray work is included, the optimum spray conditions shift to those with lager drop sizes. For example, roundtrip isothermal efficiency peaks around 95 % at a mass loading of 14 and at Crowe numbers <0.1 with a pressure ratio of ten. The results indicate that near-isothermal CAES compression and expansion is possible but that spray work should be included for significant mass loadings (e.g. greater than unity). Further investigation is recommended to consider effects of multi-dimensionality, turbulence, wall-interactions, and droplet dynamics.more » « less
-
Abstract. Gas–particle partitioning of water-soluble organic compounds plays a significant role in influencing the formation, transport, and lifetime oforganic aerosols in the atmosphere, but is poorly characterized. In this work, gas- and particle-phase concentrations of isoprene oxidation products(C5-alkene triols and 2-methylterols), levoglucosan, and sugar polyols were measured simultaneously at a suburban site of the western Yangtze RiverDelta in east China. All target polyols were primarily distributed into the particle phase (85.9 %–99.8 %). Given the uncertainties inmeasurements and vapor pressure predictions, a dependence of particle-phase fractions on vapor pressures cannot be determined. To explore the impactof aerosol liquid water on gas–particle partitioning of polyol tracers, three partitioning schemes (Cases 1–3) were proposed based onequilibriums of gas vs. organic and aqueous phases in aerosols. If particulate organic matter (OM) is presumed as the only absorbing phase(Case 1), the measurement-based absorptive partitioning coefficients (Kp,OMm) of isoprene oxidation products and levoglucosan were more than 10 times greater than predicted values (Kp,OMt). The agreement betweenKp,OMm and Kp,OMt was substantially improved when solubility in a separate aqueous phase wasincluded, whenever water-soluble and water-insoluble OM partitioned into separate (Case 2) or single (Case 3) liquid phases,suggesting that the partitioning of polyol tracers into the aqueous phase in aerosols should not be ignored. The measurement-based effective Henry'slaw coefficients (KH,em) of polyol tracers were orders of magnitude higher than their predicted values in pure water(KH,wt). Due to the moderate correlations between log(KH,em/KH,wt) andmolality of sulfate ions, the gap between KH,em and KH,wt of polyol tracers could not be fullyparameterized by the equation defining “salting-in” effects and might be ascribed to mechanisms of reactive uptake, aqueous phase reaction,“like-dissolves-like” principle, etc. These study results also partly reveal the discrepancy between observation and modeling of organicaerosols.more » « less
An official website of the United States government
